(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
p(0) → 0
p(s(x)) → x
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0))))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
plus(s(x), y) →+ s(plus(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
p(0') → 0'
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0')), plus(zero(0'), 0'), s(plus(0', zero(0'))))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
p(0') → 0'
p(s(x)) → x
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(s(x), y) → s(plus(p(s(x)), y))
plus(x, s(y)) → s(plus(x, p(s(y))))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(zero(y), s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(zero(y), z))
eq(0', 0') → true
eq(s(x), 0') → false
eq(0', s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0')) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
zero(div(x, x)) → x
zero(divides(x, x)) → x
zero(times(x, x)) → x
zero(quot(x, x, x)) → x
zero(s(x)) → if(eq(x, s(0')), plus(zero(0'), 0'), s(plus(0', zero(0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
plus,
times,
div,
quot,
zero,
eq,
divides,
pr,
ifThey will be analysed ascendingly in the following order:
plus < times
plus < zero
times < div
times < divides
div = quot
div = zero
div = divides
div = pr
div = if
quot = zero
quot = divides
quot = pr
quot = if
eq < zero
zero = divides
zero = pr
zero = if
eq < divides
divides = pr
divides = if
pr = if
(8) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
The following defined symbols remain to be analysed:
plus, times, div, quot, zero, eq, divides, pr, if
They will be analysed ascendingly in the following order:
plus < times
plus < zero
times < div
times < divides
div = quot
div = zero
div = divides
div = pr
div = if
quot = zero
quot = divides
quot = pr
quot = if
eq < zero
zero = divides
zero = pr
zero = if
eq < divides
divides = pr
divides = if
pr = if
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s:true:false2_0(
a),
gen_0':s:true:false2_0(
n4_0)) →
gen_0':s:true:false2_0(
+(
n4_0,
a)), rt ∈ Ω(1 + n4
0)
Induction Base:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(0)) →RΩ(1)
gen_0':s:true:false2_0(a)
Induction Step:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(+(n4_0, 1))) →RΩ(1)
s(plus(gen_0':s:true:false2_0(a), p(s(gen_0':s:true:false2_0(n4_0))))) →RΩ(1)
s(plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0))) →IH
s(gen_0':s:true:false2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
The following defined symbols remain to be analysed:
times, div, quot, zero, eq, divides, pr, if
They will be analysed ascendingly in the following order:
times < div
times < divides
div = quot
div = zero
div = divides
div = pr
div = if
quot = zero
quot = divides
quot = pr
quot = if
eq < zero
zero = divides
zero = pr
zero = if
eq < divides
divides = pr
divides = if
pr = if
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_0':s:true:false2_0(
n983_0),
gen_0':s:true:false2_0(
b)) →
gen_0':s:true:false2_0(
*(
n983_0,
b)), rt ∈ Ω(1 + b·n983
02 + n983
0)
Induction Base:
times(gen_0':s:true:false2_0(0), gen_0':s:true:false2_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_0':s:true:false2_0(+(n983_0, 1)), gen_0':s:true:false2_0(b)) →RΩ(1)
plus(gen_0':s:true:false2_0(b), times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b))) →IH
plus(gen_0':s:true:false2_0(b), gen_0':s:true:false2_0(*(c984_0, b))) →LΩ(1 + b·n9830)
gen_0':s:true:false2_0(+(*(n983_0, b), b))
We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
The following defined symbols remain to be analysed:
eq, div, quot, zero, divides, pr, if
They will be analysed ascendingly in the following order:
div = quot
div = zero
div = divides
div = pr
div = if
quot = zero
quot = divides
quot = pr
quot = if
eq < zero
zero = divides
zero = pr
zero = if
eq < divides
divides = pr
divides = if
pr = if
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
eq(
gen_0':s:true:false2_0(
n2234_0),
gen_0':s:true:false2_0(
n2234_0)) →
true, rt ∈ Ω(1 + n2234
0)
Induction Base:
eq(gen_0':s:true:false2_0(0), gen_0':s:true:false2_0(0)) →RΩ(1)
true
Induction Step:
eq(gen_0':s:true:false2_0(+(n2234_0, 1)), gen_0':s:true:false2_0(+(n2234_0, 1))) →RΩ(1)
eq(gen_0':s:true:false2_0(n2234_0), gen_0':s:true:false2_0(n2234_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
eq(gen_0':s:true:false2_0(n2234_0), gen_0':s:true:false2_0(n2234_0)) → true, rt ∈ Ω(1 + n22340)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
The following defined symbols remain to be analysed:
quot, div, zero, divides, pr, if
They will be analysed ascendingly in the following order:
div = quot
div = zero
div = divides
div = pr
div = if
quot = zero
quot = divides
quot = pr
quot = if
zero = divides
zero = pr
zero = if
divides = pr
divides = if
pr = if
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
quot(
gen_0':s:true:false2_0(
n2877_0),
gen_0':s:true:false2_0(
n2877_0),
gen_0':s:true:false2_0(
1)) →
gen_0':s:true:false2_0(
1), rt ∈ Ω(1 + n2877
0)
Induction Base:
quot(gen_0':s:true:false2_0(0), gen_0':s:true:false2_0(0), gen_0':s:true:false2_0(1)) →RΩ(1)
s(div(gen_0':s:true:false2_0(0), s(gen_0':s:true:false2_0(0)))) →RΩ(1)
s(0')
Induction Step:
quot(gen_0':s:true:false2_0(+(n2877_0, 1)), gen_0':s:true:false2_0(+(n2877_0, 1)), gen_0':s:true:false2_0(1)) →RΩ(1)
quot(gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(1)) →IH
gen_0':s:true:false2_0(1)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(19) Complex Obligation (BEST)
(20) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
eq(gen_0':s:true:false2_0(n2234_0), gen_0':s:true:false2_0(n2234_0)) → true, rt ∈ Ω(1 + n22340)
quot(gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(1)) → gen_0':s:true:false2_0(1), rt ∈ Ω(1 + n28770)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
The following defined symbols remain to be analysed:
div, zero, divides, pr, if
They will be analysed ascendingly in the following order:
div = quot
div = zero
div = divides
div = pr
div = if
quot = zero
quot = divides
quot = pr
quot = if
zero = divides
zero = pr
zero = if
divides = pr
divides = if
pr = if
(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol div.
(22) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
eq(gen_0':s:true:false2_0(n2234_0), gen_0':s:true:false2_0(n2234_0)) → true, rt ∈ Ω(1 + n22340)
quot(gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(1)) → gen_0':s:true:false2_0(1), rt ∈ Ω(1 + n28770)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
The following defined symbols remain to be analysed:
zero, divides, pr, if
They will be analysed ascendingly in the following order:
div = quot
div = zero
div = divides
div = pr
div = if
quot = zero
quot = divides
quot = pr
quot = if
zero = divides
zero = pr
zero = if
divides = pr
divides = if
pr = if
(23) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol zero.
(24) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
eq(gen_0':s:true:false2_0(n2234_0), gen_0':s:true:false2_0(n2234_0)) → true, rt ∈ Ω(1 + n22340)
quot(gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(1)) → gen_0':s:true:false2_0(1), rt ∈ Ω(1 + n28770)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
The following defined symbols remain to be analysed:
if, divides, pr
They will be analysed ascendingly in the following order:
div = quot
div = zero
div = divides
div = pr
div = if
quot = zero
quot = divides
quot = pr
quot = if
zero = divides
zero = pr
zero = if
divides = pr
divides = if
pr = if
(25) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol if.
(26) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
eq(gen_0':s:true:false2_0(n2234_0), gen_0':s:true:false2_0(n2234_0)) → true, rt ∈ Ω(1 + n22340)
quot(gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(1)) → gen_0':s:true:false2_0(1), rt ∈ Ω(1 + n28770)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
The following defined symbols remain to be analysed:
pr, divides
They will be analysed ascendingly in the following order:
div = quot
div = zero
div = divides
div = pr
div = if
quot = zero
quot = divides
quot = pr
quot = if
zero = divides
zero = pr
zero = if
divides = pr
divides = if
pr = if
(27) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol pr.
(28) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
eq(gen_0':s:true:false2_0(n2234_0), gen_0':s:true:false2_0(n2234_0)) → true, rt ∈ Ω(1 + n22340)
quot(gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(1)) → gen_0':s:true:false2_0(1), rt ∈ Ω(1 + n28770)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
The following defined symbols remain to be analysed:
divides
They will be analysed ascendingly in the following order:
div = quot
div = zero
div = divides
div = pr
div = if
quot = zero
quot = divides
quot = pr
quot = if
zero = divides
zero = pr
zero = if
divides = pr
divides = if
pr = if
(29) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol divides.
(30) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
eq(gen_0':s:true:false2_0(n2234_0), gen_0':s:true:false2_0(n2234_0)) → true, rt ∈ Ω(1 + n22340)
quot(gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(1)) → gen_0':s:true:false2_0(1), rt ∈ Ω(1 + n28770)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
(32) BOUNDS(n^3, INF)
(33) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
eq(gen_0':s:true:false2_0(n2234_0), gen_0':s:true:false2_0(n2234_0)) → true, rt ∈ Ω(1 + n22340)
quot(gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(n2877_0), gen_0':s:true:false2_0(1)) → gen_0':s:true:false2_0(1), rt ∈ Ω(1 + n28770)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
No more defined symbols left to analyse.
(34) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
(35) BOUNDS(n^3, INF)
(36) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
eq(gen_0':s:true:false2_0(n2234_0), gen_0':s:true:false2_0(n2234_0)) → true, rt ∈ Ω(1 + n22340)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
No more defined symbols left to analyse.
(37) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
(38) BOUNDS(n^3, INF)
(39) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
No more defined symbols left to analyse.
(40) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
times(gen_0':s:true:false2_0(n983_0), gen_0':s:true:false2_0(b)) → gen_0':s:true:false2_0(*(n983_0, b)), rt ∈ Ω(1 + b·n98302 + n9830)
(41) BOUNDS(n^3, INF)
(42) Obligation:
TRS:
Rules:
p(
0') →
0'p(
s(
x)) →
xplus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
s(
x),
y) →
s(
plus(
p(
s(
x)),
y))
plus(
x,
s(
y)) →
s(
plus(
x,
p(
s(
y))))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
zero(
y),
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
zero(
y),
z))
eq(
0',
0') →
trueeq(
s(
x),
0') →
falseeq(
0',
s(
y)) →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
divides(
y,
x) →
eq(
x,
times(
div(
x,
y),
y))
prime(
s(
s(
x))) →
pr(
s(
s(
x)),
s(
x))
pr(
x,
s(
0')) →
truepr(
x,
s(
s(
y))) →
if(
divides(
s(
s(
y)),
x),
x,
s(
y))
if(
true,
x,
y) →
falseif(
false,
x,
y) →
pr(
x,
y)
zero(
div(
x,
x)) →
xzero(
divides(
x,
x)) →
xzero(
times(
x,
x)) →
xzero(
quot(
x,
x,
x)) →
xzero(
s(
x)) →
if(
eq(
x,
s(
0')),
plus(
zero(
0'),
0'),
s(
plus(
0',
zero(
0'))))
Types:
p :: 0':s:true:false → 0':s:true:false
0' :: 0':s:true:false
s :: 0':s:true:false → 0':s:true:false
plus :: 0':s:true:false → 0':s:true:false → 0':s:true:false
times :: 0':s:true:false → 0':s:true:false → 0':s:true:false
div :: 0':s:true:false → 0':s:true:false → 0':s:true:false
quot :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
zero :: 0':s:true:false → 0':s:true:false
eq :: 0':s:true:false → 0':s:true:false → 0':s:true:false
true :: 0':s:true:false
false :: 0':s:true:false
divides :: 0':s:true:false → 0':s:true:false → 0':s:true:false
prime :: 0':s:true:false → 0':s:true:false
pr :: 0':s:true:false → 0':s:true:false → 0':s:true:false
if :: 0':s:true:false → 0':s:true:false → 0':s:true:false → 0':s:true:false
hole_0':s:true:false1_0 :: 0':s:true:false
gen_0':s:true:false2_0 :: Nat → 0':s:true:false
Lemmas:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:true:false2_0(0) ⇔ 0'
gen_0':s:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:true:false2_0(x))
No more defined symbols left to analyse.
(43) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s:true:false2_0(a), gen_0':s:true:false2_0(n4_0)) → gen_0':s:true:false2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(44) BOUNDS(n^1, INF)